Learn how to apply artificial intelligence to unstructured content workflows with context, accuracy, and nuance – without massive costs. Intelligent Document Processing (IDP) is technology that enables organizations to automate their most complex document-based workflows including forms, documents, text, images, video and more.

Download the Gartner Report: 2020 Market Guide for Text Analytics

Download Now

Key Benefits of Intelligent Document Processing

Empower Your Process Owners

Intuitive point and click interface for unstructured content classification, extraction, and workflows; no data scientists required.

Beyond Templates & Rules

Quickly build custom machine learning models with just 200 examples, tailored precisely to your document understanding challenges

No Black Boxes - Complete Transparency

Award-winning AI Explainability and an intuitive document validation user interface to deliver unmatched output accuracy

Bringing Value to Stakeholders Throughout the Enterprise

Line of Business Executive

  • Bring AI to bear on practical business problems – with no AI expertise required
  • Free up subject matter experts to focus on more strategic work
  • Improve business efficiency and profitability

Process Professionals

  • Automated human-like decision-making at scale
  • Lower costs by creating more efficient processes
  • Realize up to 4x increase in workflow capacity

AI & IA Professionals

  • Automate complex document-based workflows at scale without templates or rule engines.
  • Achieve explainable AI – understand how decisions are made
  • Reduce training data by 1000x with transfer learning

What is Intelligent Document Processing

automating document-based workflows

Enabling the enterprise to automate their most complex document-based workflows

Intelligent document processing is gaining traction because many organizations have reached the limit of what they can do with robotic process automation (RPA) and are looking to take the next step in their automation journey.

While RPA and optical character recognition (OCR) templated approaches to document automation work well with highly structured content, where the expected data is in the same place every time, they cannot handle unstructured content – such as email, Word documents, images, PDFs and more. It’s an important distinction because in most organizations, at least 80% of their content is unstructured, making it difficult for first-generation automation solutions to deal with.

A sound intelligent document automation solution, however, enables organizations to automate processes that involve unstructured content, and without huge data sets that are normally required to accurately train automation models – and that are out of reach for the vast majority of enterprises.

Intelligent document processing is gaining traction because many organizations have reached the limit of what they can do with robotic process automation (RPA) and are looking to take the next step in their automation journey.

While RPA and optical character recognition (OCR) templated approaches to document automation work well with highly structured content, where the expected data is in the same place every time, they cannot handle unstructured content – such as email, Word documents, images, PDFs and more. It’s an important distinction because in most organizations, at least 80% of their content is unstructured, making it difficult for first-generation automation solutions to deal with.

A sound intelligent document automation solution, however, enables organizations to automate processes that involve unstructured content, and without huge data sets that are normally required to accurately train automation models – and that are out of reach for the vast majority of enterprises.

Instead, the IDP platform is based on a massive, pre-built database of labeled data points. It then incorporates an artificial intelligence technology known as transfer learning, which enables a model trained on one task to be used for a related task. Transfer learning obviates the need for a model to be trained on thousands of documents in order to achieve accuracy.

Indico, for example, has a base model consisting of some 500 million labeled data points. But thanks to transfer learning, it takes only about 200 documents and a few hours to train a document processing model with about 95% accuracy. That reduces the underlying data required by a factor of 100x to 1000x as compared to traditional approaches.

That dramatic reduction in data also means the Indico platform doesn’t require massive amounts of computing power, like many AI solutions do. Rather, it can run effectively on just one or two GPUs, and scale from there using low-cost CPU.

Intelligent document processing vs. RPA

It’s important to delve deep into how any given intelligent automation solution works in order to understand its true capabilities. Today, many vendors are playing fast and loose with all kinds of AI-related terms, including IDP. You may come across RPA vendors who say they incorporate AI technology to deliver what sounds like IDP. Under the covers, you will likely find the solution is merely a rules engine at heart that can’t handle unstructured content, especially at scale. In practice, “RPA + AI” solutions will likely solve only for structured and, at best, semi-structured use cases such as invoices.

A true IDP solution should be able to handle any type of content: structured, semi-structured and unstructured. Given the vast majority of content and data in your company is likely unstructured, only a solution that can effectively handle it will be able to accelerate your business processes and deliver transformative change. Don’t settle for less.

Automate Your Most Complex Document-Based Workflows

knowledge workers automating manual document-based workflows

Built for Citizen Data Scientists to Solve Business Problems

Automate complex business processes without data science expertise

Indico’s approach to intelligent document processing, known as Intelligent Process Automation, makes it simple and effective to build models that automate document-intensive processes normally performed by humans. 

Most processes require humans to read documents, find appropriate data and enter it into a downstream system. With Indico, the business subject matter experts who understand the processes best build models to automate such processes. 

Using Indico’s intuitive tools, process experts label the data points they want to extract from documents. As they do so, the model updates in real time to show predictions on how well the model will perform the task at hand. When the prediction hits an acceptable level, you’re done. Typically, it takes a few dozen to maybe 200 documents to properly train a model. 

Having the people who understand the business process and the desired results actually build the models is a crucial component of the Indico approach. It turns these business people into “citizen data scientists” – even though they don’t need any data science expertise. It’s a far more rapid and accurate approach than having business people try to explain a process to a data scientist, who then goes off and builds a model. With Indico, there’s no risk of requirements being lost in translation. 

All Indico tools are in plain English and are simple to use. Fully working models can be built in as little as an hour. 

Indico’s approach to intelligent document processing, known as Intelligent Process Automation, makes it simple and effective to build models that automate document-intensive processes normally performed by humans. 

Most processes require humans to read documents, find appropriate data and enter it into a downstream system. With Indico, the business subject matter experts who understand the processes best build models to automate such processes. 

Using Indico’s intuitive tools, process experts label the data points they want to extract from documents. As they do so, the model updates in real time to show predictions on how well the model will perform the task at hand. When the prediction hits an acceptable level, you’re done. Typically, it takes a few dozen to maybe 200 documents to properly train a model. 

Having the people who understand the business process and the desired results actually build the models is a crucial component of the Indico approach. It turns these business people into “citizen data scientists” – even though they don’t need any data science expertise. It’s a far more rapid and accurate approach than having business people try to explain a process to a data scientist, who then goes off and builds a model. With Indico, there’s no risk of requirements being lost in translation. 

All Indico tools are in plain English and are simple to use. Fully working models can be built in as little as an hour. 

Sound IDP Requires Deep Learning

While Indico’s platform is simple to use, it’s built on some sophisticated cognitive AI technology that we keep behind the scenes. 

One example is deep learning. Normally, users have to program a model such that the computer can understand what it needs to do. Deep learning turns that notion around and says, “Show me examples of what you want to achieve and I’ll figure out how to do it.”

Natural language processing (NLP) is likewise a crucial element. NLP enables the Indico platform to understand context in a given piece of content – whether structured or unstructured. It enables the model to “read” a document and understand it just as a human would. But it functions strictly behind the scenes; there’s no need for business users to understand what NLP is or how it works.

That goes for machine learning (ML) as well. The Indico platform is built on sophisticated ML models, but users never have to interact with them. They simply focus on delivering business benefits by building models that remove repetition and complexity from document-intensive processes, while improving accuracy. 

You may find other products that incorporate deep learning, NLP and ML to address processes that involve unstructured content, but you will likely find them to be far more complex to implement. Typically they do require data science expertise, along with millions of dollars to implement and maintain.

Intelligent Document Processing Use Cases

Putting intelligent document processing to work in Banking & Financial Services, Insurance, Investment Management and more

image shows that indico's intelligent process automation is a strong fit for banking and finance use cases

IDP in Banking & Financial Services

Mortgage underwriting

The mortgage underwriting process typically involves humans looking over lots of documents to assess an applicant’s creditworthiness. Applying intelligent document processing to mortgage underwriting automates the process, with the IDP platform instead “reading” the documents and extracting relevant data for input into the bank’s credit evaluation system.

Customer onboarding

IDP can take the various documents required to onboard a new customer and automatically classify them, extract relevant data and input it into the bank’s digital management system. Customers are onboarded more quickly, with increased accuracy, resulting in faster time to revenue for the bank and improved customer satisfaction.

Automate LIBOR document processing

The LIBOR interest rate benchmark is due to be phased out at the end of 2021. Banks and financial institutions worldwide are left poring through documents looking for references to LIBOR in order to determine what their exposure is and take steps to address it – a task that screams for IDP.

AML Automation

Another common use case for commercial banking automation is meeting regulatory requirements around anti-money laundering (AML). In the U.S., that means complying with the Bank Secrecy Act and related regulations meant to deter money laundering by terrorist nancing networks and drug cartels.

KYC process automation

Closely related to AML requirements is “know your customer” regulations, and they present similar challenges. As part of the commercial banking client onboarding process, these laws require banks to make an effort to verify the identity of customers as well as the risks involved in any business relationship with them.

image shows that indico's intelligent process automation is a strong fit for insurance company use cases

IDP in Insurance

Life insurance underwriting

Applying intelligent document processing to life insurance underwriting can help companies dramatically improve the process by largely taking humans out of the equation. With IDP, companies can create models to quickly categorize and extract data from reams of documents.

Claims processing

For insurance claims processing, intelligent document processing can be used to automate the classification and annotation of new claims, and route them to the appropriate subject matter expert for processing. It can also help extract pertinent information from documents, including unstructured content such as images and free-form notes from insurance adjusters.

image shows that indico's intelligent process automation is a strong fit for investment management firms

IDP in investment management

Financial document analysis

Investment firms can take advantage of intelligent document processing for wealth management by using it to analyze financial documents. Normally, humans read financial statements and pore over investment data, manually extracting relevant data. IDP enables financial firms to automate the process, pulling out relevant data and normalizing it for insertion into data processing tools. The result is a dramatic improvement in speed, efficiency and accuracy.

Trade processing automation

Investment firms often receive trade processing documents via email and in PDFs. They can use intelligent data processing tools to automate trade processing by extracting relevant unstructured data from these documents, and normalizing it for input into the firm’s digital management system, eliminating hours and hours of manual data processing.

Counting up the Benefits of Intelligent Document Processing

Bringing transformational efficiencies to the enterprise

Use cases like those above make it easy to see how IDP saves companies time and money. From our experience with customers, here’s the kind of gains you can expect from Indico:

85% reduction in process cycle times

Realize faster time to market for new initiatives and improve customer satisfaction

4x increase in process capacity

Create dramatic cost efficiencies for back-office functions and scale critical processes without increasing expenses

80% reduction in human resources

Free up employees from tedious, low-value tasks and repurpose them for higher value, more strategic projects

Ease of use

With no data science expertise required, turn your business process experts into citizen data scientists

1000x less training data required

Build effective models with a fraction of the data traditional artificial intelligence solutions require

Built for unstructured content

Automate your most complex document-based workflows

Calculating the ROI of Intelligent Document Processing

Increase efficiency, reduce costs, transform the enterprise

Perhaps figures like 85% reduction in cycle times and 4x increase in process capacity sound almost too good to be true. We can assure you they are most certainly real and add up to a rapid return-on-investment (ROI). 

Consider a document-intensive process that involves 10 employees who each earn $100,000 per year, or $1 million total. Let’s say the team performs 500,000 tasks per year for a given process; that comes to $2 per task. If an IDP solution can automate 75% of those tasks – a perfectly reachable goal – the cost per task falls to just 50 cents, so the company saves $750,000 per year. 

Looking at it another way, you now have $750,000-worth of employee hours to dedicate to other areas – a dramatic increase in overall capacity. 

At the same time, by freeing up employees from tedious tasks, you gain soft benefits including increased employee satisfaction and productivity. Meanwhile, the IDP solution will perform the newly automated tasks with increased accuracy and consistency – because computers don’t get tired or make typos.

But don’t take our word for it. Listen to MetLife’s VP of Intelligent Automation, who recently discussed his automation journey with us. You’ll learn how MetLife went from automating simple tasks with RPA to using IDP to automate unstructured document-based workflows. Over the next 5 years, MetLife expects to realize $100M in value through hours saved by automating processes involving unstructured data. You can watch the full interview here.

Perhaps figures like 85% reduction in cycle times and 4x increase in process capacity sound almost too good to be true. We can assure you they are most certainly real and add up to a rapid return-on-investment (ROI). 

Consider a document-intensive process that involves 10 employees who each earn $100,000 per year, or $1 million total. Let’s say the team performs 500,000 tasks per year for a given process; that comes to $2 per task. If an IDP solution can automate 75% of those tasks – a perfectly reachable goal – the cost per task falls to just 50 cents, so the company saves $750,000 per year. 

Looking at it another way, you now have $750,000-worth of employee hours to dedicate to other areas – a dramatic increase in overall capacity. 

At the same time, by freeing up employees from tedious tasks, you gain soft benefits including increased employee satisfaction and productivity. Meanwhile, the IDP solution will perform the newly automated tasks with increased accuracy and consistency – because computers don’t get tired or make typos.

But don’t take our word for it. Listen to MetLife’s VP of Intelligent Automation, who recently discussed his automation journey with us. You’ll learn how MetLife went from automating simple tasks with RPA to using IDP to automate unstructured document-based workflows. Over the next 5 years, MetLife expects to realize $100M in value through hours saved by automating processes involving unstructured data. You can watch the full interview here.